
Powerful trace facility for the
MC68000 microprocessor

system
Trace facilities can be useful debugging aids. S M Said and K R Dimond

present a package for the 68000

Software providing a trace facility for 68000-based
systems has been written and installed in a monitor
program. The commands in the software package are of
two types: for the unconditional single-step function,
and for the conditional trace function. Both types of
command are described. The package is intended far
use in nonrealtirne applications only.

microsystems system debugging 68000

The advantages of using a trace facility as a debugging
aid have long been acknowledged. Many computer
systems now provide such facilities for high-level
languages. However, at the machine level these func-
tions are less common. Generally, 8-bit microprocessor
systems use either software trace I or hardware circuitry 2
to provide these facilities.

Most monitor programs written for the MC68000
microprocessor system 3 have a form of trace command.
This command executes one instruction under user
control and then prints the contents of the processor's
registers on the screen. Initialization of the registers is
also available. The package described in this paper,
however, goes further.

• It allows the user to initialize the trigger conditions.
Thus the user can trace automatically through a pro-
gram until the trigger conditions (any combination
of registers and memory contents) are met.

• It enables the user to define the parameters to be
displayed (registers or memory contents) when the
trigger parameters are valid.

The trace facility package described has been written
in M68KASM assembler, and installed in a monitor
Electronics Laboratory, University of Kent at Canterbury, Kent
CT2 7NT, UK

0141-9331/85/01003-05 $03.00 ©

VOI 9 no I jan~feb 1985

S M Said was born in EI-
Fayom, Egypt, in 1949. He
received his BSc in elec-
trical engineering from the
Military Technical College
of Cairo, Egypt, in 1971.
Between 1971 and •976 he
was involved in several
communications projects
for the Egyptian Army. Then
from 1977to 1981 he was a
lecturer at the Military

College. Since 1982 he has been working at the
University of Kent at Canterbury, UK, for his PhD in
the application of 16-bit microprocessors in digital
communication.

Keith Dimond graduated in
electrical engineering from
the University of Manchester
Institute of Science and
Technology, UK, where he
also undertook research.
He was then a scientific
officer at Government Com-
munications Headquarters,
Cheltenham, UK. Dimond
joined the Electronics Lab-
oratory at the University of
Kent in October 1971. He

became Senior Lecturer there in 1981. His interests
are in CAD tools for digital and system design.

program for use on the 16-bit 68000 microprocessor.
The package does not use any of the processor
interrupts nor require any hardware modifications.

1985 Butterworth & Co. (Publishers) Ltd

31 16 15 8

~ _ _

D3

D4

D5

D6

D7

A0

A1

A2

A3

A4

__ ~ A5

A6

. User stack pointer(USPT A7

Supervisor stack pointer (SSP) [

31 24

V//////A J
15 13

IrHsl I]sa

Figure 1. MC68000 programming model

DO

D1

D2

Eight data registers

Seven address
registers

Two stack

pointers

Program counter

Status register

REGISTER STRUCTURE OF THE PROCESSOR

The 68000 offers eight data registers, seven address
registers, two stack pointers (one for user programs
and the other for supervisor programs), a program
counter and a status register. Figure 1 shows the pro-
cessor's internal registers.

To support multiuser and multitasking applications
the 68000 operates in two different states: a user state
for normal functions and a supervisor state for system
control (eg an operating system). In the status register,
bit 13(S) indicates whether the processor is operating
in the supervisor state (S = 1) or the user state (S = 0).
When the system is in the supervisor state, all machine
code instructions can be executed without any restric-
tions. However, when the system is in the user state
some privileged instructions cannot be executed (eg
instructions involving the manipulation of the system
stack pointer).

The 68000 has an integral single-step facility, con-
trolled by bit 15 (T) of the status register. When the T
bit is set to 1, the 68000 will execute one program
instruction. After this instruction is terminated, the
processor will enter the supervisor state (S = 1), switch
off the trace mode (T=O) and then proceed to
execute a program whose starting address is stored in
the trace exception vector 4.

SOFTWARE IMPLEMENTATION

The trace facility software is based on the processor's

single-step ability to provide the user '~ith I ~ (~.~,,q~
debugging functions

• unconditional single-step commanG
• conditional trace command

User's view of the system

Since the trace package has been designed to be
added to the system monitor, the commands have a
similar format. The commands needed to use the
package are

• for the unconditional single-step command
SS : single step

• for conditional trace command
ID :initialize display parameters
IT :initialize trigger parameters
KD : kill display parameters
KT : kill trigger parameters
PP : print parameters
TR : trace command

UNCONDIT IONAL SINGLE-STEP C O M M A N D

This function permits a user program to be executed
one instruction at a time. The contents of the pro-
cessor's registers are displayed on the screen after
each instruction has been executed.

As an understanding of this command is essential for
comprehending the trace command, the flowchart of
the single-step program is shown in Figure 2. The
detailed procedure is as follows.

Stage 1 When the single-step command is entered, a
routine is called to set bit 15 (T = 1) and to clear bit 13
(S = O) of a reserved memory location (XSR). This
memory location will be subsequently loaded into the
processor's status register (SR).

Stage 2 Another routine is then called to load the pro-
cessor's registers from a reserved memory area as
shown in Figure 3. As these memory locations have
been previously initialized by the user, the single-step
starting conditions are defined by the user. In other
words, the executed instruction will be fetched from
an address contained in the memory location XPC. The

Figure 2.

,~ Yes Yes '{
- Change to user

mode (S = 0) i
- Change to trace

mode (T = 1)

+
instruction

Print registers
-- Switch trace mode

of f (T = 0)
Return to system
mode (S = 1)

Flowchart of the single-step process

. . . .

N o
v

4 microprocessors and microsystems

Before single
instruction
execution

Figure 3.
values

(SSP)

1
Reserved RAM location! 7 1
D0-D7 -~--P XD0-XD7
A0-A64--~XA0-XAE

SSP "~--~XA7S
USP "~-PXA7 U

PC ~H~ XPC

After single
instruction
execution

Reserved memory locations for register

routine wil l init ialize the system stack pointer (SSP) to
point at the memory location XSR, and then execute a
return-from-exception (RTE) instruction. This instruction
pulls both the status register (SR) and the program
counter (PC) values from XSR and XPC in the super-
visor stack as shown in Figure 3.

Stage 3 The instruction is now pointed to by the pro-
gram counter and is executed. After the termination of
the single instruction, the processor traps through the
trace exception vector 4. The trace exception vector
contains the address of another routine which again
pushes all the register values back into the reserved
memory area. I t then clears bit 1 5 in the memory location
XS R and also loads the address of the next routine to be
executed into the memory location XPC. The system
stack pointer (SSP) is init ial ized again to point at the
memory location XSR, and executes an RTE instruction.
This instruction wil l load both the status register (SR)
and the program counter (PC) from the memory loca-
tions XSR and XPC respectively.

Stage 4 The final routine to be executed (pointed at by
XPC in stage 3) will print all the memory locations con-
taining register values as a result of the single executed
instruction. Control is then returned to the system
monitor to wait for the next command.

CONDIT IONAL TRACE C O M M A N D

A single-stepping facil ity such as that described above
wil l trace each instruction executed. In cases where
the number of instructions being executed is small,
such a facility is very useful. However, if the number of
instructions executed is large it can be rather cumber-
some. In this case, what is required is a mechanism
whereby the tracing facility can be switched on and
off automatically.

The term 'condit ional trace' refers to the abil i ty of
this command to single step through a program, and on
each step to perform comparisons between preinitialized
registers and/or memoryvalues (trigger values) and the
current program values. When the trigger values are
met, the trace program prints the registers and/or the
memory parameters defined previously.

Initialization of parameters

To use the tracing facility, the user must first initialize
the trace parameters. There are two groups of para-

meters that must be set up before the trace command
can be used

• display parameters
• trigger parameters

Display parameter format

The user can interactively define any combinat ion of
registers and/or memory locations to form a display
parameter. This parameter can be displayed at any
t ime or after the trace trigger condit ions have been
met.

The display parameters needed are stored in a buffer.
The mechanism of display init ial ization is shown in
Figure 4, where the display buffer (DISBU F) has a pointer
(DISPTR) and works in conjunction with two other
tables: the str ingtable (STRTBL) and a subroutine table
(SUBTBL1). The software represents each display
parameter as a set of numbers according to its type
as follows.

• Index value is an offset value which is added to a
pointer register that has been init ial ized previously
to point at the start of either the SUBTBL1 or the
STRTBL table. Therefore the resultant value of the
pointer register wil l point to either the starting
address of a string in the STRTBL table or a sub-
routine to be executed in the SUBTBL1 table.

• The address parameter is only inserted in the buffer
table (DISBUF) if the display parameter is a memory
location.

After storing all the display parameters, the software
inserts a terminator at the end of the buffer DISBUF.
Figure 4 shows an example of two different display
parameters stored in the display buffer.

Trigger parameter format

As in the display parameter init ialization, any combina-
tion of registers and/or memory locations can form the
trace trigger condit ion. These parameters are stored in
a trigger buffer (TRGBUF). As shown in Figure 5, the
buffer has a pointer (TRGPTR), which works in con-

Display buffer String table
DISBUF) (STRTBL) ex l
Index 2 L~ (SDOD: DC.B 'DO =')

Address 2

Pointer Terminator

(DISPTR)i l I '~ I L~ISMEM: DC.B 'ADDRESS')

I [Subroutine table
I L S UBTBL1)

• DOD: MOVE.L XD0, D0
• I RTS /

MEMD MOVE" 00 /
• J ~ MOVE.L (address 2), DO

RTS J

Figure 4. Display buffer (DISBUF) initialized with two
conditions: the processor register (DO) and a memory
location

vol 9 no 1 jan/feb 1985 5

Pointer
>

(TRGPTRI

Trigger buffer
(TRGBUF)

Index 1
Data length 1

Data I

Index 2
Data length 2

Memory address
data 2

Terminator

String table
(STRTBL) ~ (SDID: DC.B 'D1 I

Subrou!ine[ta/~bllSMEM: DC.B 'ADDRESS')

o0

Figure 5. Trigger buffer (TRGBUF) initialized with two
conditions: the processor register (D1) and a memory
location

junction with the two tables STRTBL and SUBTBL2.
Each trigger parameter is represented as follows.

• Index value is an offset value from the start of either
the STRTBL or the SUBTBL2 table, as with the dis-
play parameter.

• Data length identifies the data length (byte, word or
long word).

• Data value shows what the data trigger value is.
• Address is only inserted if the memory location is a

trigger parameter.

Again, a terminator is used to identify the buffer end in
the same way as for the display buffer.

Kill parameters

The KP command enables the user to remove previously
defined parameters. As mentioned before, both the
display parameters and the trigger parameters are
stored in buffers (DISBUF and TRGBUF respectively)
ended with a terminator. The reason for using this
terminator is to simplify the process of adding new
parameters or killing old ones. New parameters can be
added to the buffers simply by moving the terminator
down, while moving the terminator to the top of the
buffer will remove all the previous parameters.

The two kill commands mentioned above enable
either the display parameters or the trigger parameters
to be deleted. This is done by inserting the terminator
at the beginning of either DISBUF or TRGBUF.

Print parameters

The print command is used either as a command by the
user or as a subroutine by the system.

When employed by the user the command acts as
an interactive monitor of the preinitialized conditions.
Once the display and trigger parameters have been
initialized, the user can display them at any time using
the ' PP' command.

The command is employed bythe system as a result
of a successful trigger condition occurring. Thus when

the trigger values are met the display paramet~,t~ a~;
printed automatically.

To display all the initialized conditions, the punl
routine interprets the stored informatiorl in both the,
display and trigger buffers into printed messages. ~t
begins with the display buffer DISBU F, moves its pointer
DISPTR to the start, and reads the buffer elements.
Using the processor's indirect addressing mode with
index and offset, the print routine uses the index
values stored in the buffer to form two pointers. As
explained in the listing shown in Figure 6, die twc~
pointers will point to the addresses of a string to be
printed in the STRTBL table and a subroutine to be
executed from the SUBTBL1 table. The pointer DISPTR
is then moved to the next buffer element to get tile
index value and to reform the two pointers. This process
is repeated until the buffer terminator is reached. The
complete sequence is then repeated using the trigger
buffer TRGBUF. The output format of the examples
described in Figures 4 and 5 is

Trace Display Parameters:

DO = 00001200 Address 00100000 = O000FFF1

Trace Trigger Parameters:

D1 = FFFFFFFF Address O002FO00 = 00000OFF

Trace command

As mentioned above, this command enables the user
to trace through program instructions until the pre-
defined conditions are met.

The flowchart of the trace command is shown in
Figure 7. When this routine is entered, it changes to the
user state and executes one user instruction as
explained before in the unconditional single step. After
storing all register values in memory, it starts to test the
trigger conditions. This trigger testing is performed by
comparing the trigger values in the trigger buffer
TRGBUF with the current values. The testing time is
minimized as follows: if a trigger condition is not met,
the rest of the conditions are not tested; if the tested
condition is valid, it proceeds to check the next entry in
the buffer table. This process of single stepping and
checking of trigger conditions is repeated until the
trigger values are met.

As the trace process takes many instructions, the
following points were taken into account.

• The search process for the trigger conditions should
be as fast as possible. This is achieved by using the
powerful addressing modes of the processor for fast
access of both the trigger buffer and the subroutine
table.

SUBROUTINE (PRINT) TO PRINT DISPLAY AND TRIGGER PARAMETERS

LEA 5TRTBL, A2 * STRING TABLE POINTER
LEA SUB~BL1, A4 * SUBROUTINE TABLE POINTER
LEA DISBUF, A5 * DISPLAY BUFFER POINTER

PRINTDIS : MOVE.L (A5) +, D3 * GET INDEX VALUE
CMP. L =SFF, D3 * TERMINATOR CODE ?
BEQ PRINTTRG * GO TO PRINT TRIGGER V A L U E
MOVEA.L 0 (A2, D3.L), A0 * GET STRING ADDRESS
JSR STROUTPUT * PRINT STRING
MOVEA. L 0 (A2, D3. L), A0 * GET SUBROUTINE ADDRESS
JSR (A0) * EXECUTE ROUTINE
JSR OUTPUT * PRINT VALUE IN DO
BRA PRINTDIS * NEXT DISPLAY PARAMETER

PRINTTRG: LEA TRGTBL, A5 * TRIGGER BUFFER POINTER

Figure 6. Listing of part of the print routine

6 microprocessors and microsystems

E~

~ No J ~ ' ~ . No [~onitor comma~nd~l~----~Other monltor'"~.Lib.I

Yes !Yes
i - Change to user t mode (S = 0)

Change to trace
mode;T = 1)

I Execute one user
instruction I

I Storeailr,~:jisters) into reserved RAM

~ PPcommand to L
print parameters ~"

Yes r

PP command to
print parameters

~T~ IV° [No

I Load registers from
reserved RAM I

+
Figure 7. Flowchart of the conditional trace process

• During the tracing time the user is unaware of what
is going on, while the trigger conditions may be
unrealizable. Consequently, the software should
include some sort of reveal function to allow the
user to monitor the current processor status, registers
and/or memory defined previously in the initialization
commands. This reveal command is ' con t ro l - R'
during the trace process (as shown in Figure 7).

• A break character (ESC) can be used at any time
during program tracingto terminate and re-enter the
monitor at the command level (as shown in Figure 7).

C O N C L U S I O N S

The software package described here has been written
for the 68000 microprocessor and installed in a monitor
program for the 68000 system. The package provides
the user with two powerful debugging facilities: single
stepping and tracing. The package is only intended for
use as a debugging aid on nonrealtime software
applications. This is mainly because of the overheads
of the software executed on every user instruction
traced.

The main ideas of the software, and how it was
implemented, have been explained. A complete listing
of the package is available from the authors.

A C K N O W L E D G E M E N T S

S M Said would like to acknowledge the Egyptian
Government for its financial support, and to thank H
Twyman for his invaluable help and cooperation.

R E F E R E N C E S

1 Williams, M H 'A useful trace facility for micro-
computers' Microprocessors Microsyst. Vol 5 No 3
(1981) pp 99-102

2 MEK6800D2 evaluation kit II manual Motorola,
USA (1977)

3 Mostek Matrix 68 K system with BOOT68 K monitor
(1983)

4 MC68000 user manual Motorola, USA (1982)

vol 9 no 7 jan~feb 1985 7

